Calculation of Eigenstresses in Electrodeposits by Deformation of a Thin Plate Cathode :[full text in Russian]
Abstract
Draw on the analogy between a libre thermal strain in a elastic body and a libre eigenstrain in a electrodeposit, for calculation of eigenstress (residual stress) in the superficial layer of a galvanic coating, formula (4) is obtained, where En, µ and β are the modulus of elasticity for coating, Poisson´s ratio (identical for coating and substrate) and free linear eigenstrain in the coating superficial layer. I addition eigenstrain β is calculated from the experimentally determined curvature of the substrate. The correspondind calculation formulae are presented for a plate substrate with free edges (Fig. 1a): formula (8), for slipping edges (Fig.1b): formula (36) and for fixed edges (Fig.1v): formula (38). Substitution these formulae in formula (4) yields the corresponding formulae of Stoney [2] an Brenner-Senderoff [3] complemented by factor 1/(1-µ) which modifies the formulae under consideration through taking account of the biaxial state of stress in a coated plate cathode. Lähtudes analoogiast vaba termodeformatsiooni ja vaba omadeformatsiooni vahel on omapingete (jääkpingete) arvutamiseks galvaanilise katte pinnakihis saadud valem (4), kus En, µ ja β on vastavalt katte elastsusmoodul, Poissoni tegur (identne kattele ja alusele) ja omadeformatsioon (vaba joondeformatsioon) katte pinnakihis. Omadeformatsioon β määratakse kattega aluse kõveruse järgi. Vastavad arvutusvalemid on koostatud plaatalausele, mille servad on kas vabad (Fug.1a): valem (8) või aluse tasapinnas libisevad (Fig.1b): valem (36) või liikumatult kinnitatud (Fig. 1v): valem (38). Elimineerides nende valemite abil valemist (4) omadeformatsiooni β, saame teguriga 1/(1-µ) täiendatud Stoney valemi [2] ja Brenner-Senderoffi valemid [3], mis modifitseerivad kõnesolevad valemid tasandpinguse arvestamisega aluses ja kattes.