EMU DSpace
Advanced Search
  • English 
    • English
    • Eesti
  • Login
    • English
    • Eesti
View Item 
  •   DSpace
  • Institute of Forestry and Rural Engineering (MMI)
  • MMI Publications
  • Jakub Kõo
  • View Item
  •   DSpace
  • Institute of Forestry and Rural Engineering (MMI)
  • MMI Publications
  • Jakub Kõo
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calculation of Eigenstresses in Electrodeposits by Deformation of a Thin Plate Cathode :[full text in Russian]

Thumbnail
View/Open
Full text (873.7Kb)
Date
1959
Author
Kõo, Jakub
Metadata
Show full item record
Abstract
Draw on the analogy between a libre thermal strain in a elastic body and a libre eigenstrain in a electrodeposit, for calculation of eigenstress (residual stress) in the superficial layer of a galvanic coating, formula (4) is obtained, where En, µ and β are the modulus of elasticity for coating, Poisson´s ratio (identical for coating and substrate) and free linear eigenstrain in the coating superficial layer. I addition eigenstrain β is calculated from the experimentally determined curvature of the substrate. The correspondind calculation formulae are presented for a plate substrate with free edges (Fig. 1a): formula (8), for slipping edges (Fig.1b): formula (36) and for fixed edges (Fig.1v): formula (38). Substitution these formulae in formula (4) yields the corresponding formulae of Stoney [2] an Brenner-Senderoff [3] complemented by factor 1/(1-µ) which modifies the formulae under consideration through taking account of the biaxial state of stress in a coated plate cathode.
 
Lähtudes analoogiast vaba termodeformatsiooni ja vaba omadeformatsiooni vahel on omapingete (jääkpingete) arvutamiseks galvaanilise katte pinnakihis saadud valem (4), kus En, µ ja β on vastavalt katte elastsusmoodul, Poissoni tegur (identne kattele ja alusele) ja omadeformatsioon (vaba joondeformatsioon) katte pinnakihis. Omadeformatsioon β määratakse kattega aluse kõveruse järgi. Vastavad arvutusvalemid on koostatud plaatalausele, mille servad on kas vabad (Fug.1a): valem (8) või aluse tasapinnas libisevad (Fig.1b): valem (36) või liikumatult kinnitatud (Fig. 1v): valem (38). Elimineerides nende valemite abil valemist (4) omadeformatsiooni β, saame teguriga 1/(1-µ) täiendatud Stoney valemi [2] ja Brenner-Senderoffi valemid [3], mis modifitseerivad kõnesolevad valemid tasandpinguse arvestamisega aluses ja kattes.
 
URI
http://hdl.handle.net/10492/4027
Collections
  • Jakub Kõo

DSpace software copyright © 2002-2016  DuraSpace
All items in EMU digital archive DSpace are protected by original copyright, with all rights reserved, unless otherwise indicated.
Data policy
Feedback
 

 

Browse

All of DSpaceCommunities & CollectionsBy YearAuthorsTitlesSubjectsThis CollectionBy YearAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
All items in EMU digital archive DSpace are protected by original copyright, with all rights reserved, unless otherwise indicated.
Data policy
Feedback