Kristiina Lindenberg

SHIGA-TOKSIINE TOOTVA ESCHERICHIA COLI
LEVIMUS SUURULKITE NING VEISTE RÜMPADEL
EESTIS

PREVALENCE OF *SHIGA* TOXIN-PRODUCING *ESCHERICHIA COLI* IN LARGE GAME AND BOVINE CARCASSES IN ESTONIA

Magistritöö
Lihatehnoloogia eriala

Juhendajad: professor Mati Roasto, PhD
professor Priit Elias, PhD
nõunik Toomas Kramarenko, MSc

Tartu 2015
AUTORIDEKLARATSIOON
Olen magistritöö koostanud iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärievad andmed on viidatud.

Kristiina Lindenberg

Töö vastab magistritööle esitatud nõuetele

/professor, Mati Roasto/
/professor, Priit Elias/
/nõunik toiduohutuse alal, Toomas Kramarenko/

Kaitsmisele lubatud (kuupäev)
Osakonna juhataja /Lembit Lepasalu/
LÜHIKOKKUVÕTE

ABSTRACT

Animals that live in the wild can be as reservoirs of diseases transmissible to humans and domestic animals. Wild animal population can spread a zoonotic infection, and this is a reason why methods of laboratory analysis are continuously developed to be able to control the disease transmission from wildlife to humans or from wildlife to farmed animal species. This study focuses on prevalence of Shiga toxin-producing *Escherichia coli* on large game and cattle carcasses. Additionally, *Campylobacter* spp. and *Salmonella* spp. prevalence on large game carcasses were studied. The samples were collected and analysed according to methods described in valid standards. In total 60 carcass samples from hunted large game animals were collected, that included 30 elk (*Alces alces*), 25 wildboar (*Sus scrofa*), 3 bear (*Ursus arctos*) and 2 roe deer (*Capreolus capreolus*), and additionally 99 cattle carcass (*Bos taurus*) samples were gathered and analysed. Present study concluded that the populations of wild boars, elks and domestic cattle in Estonia are carriers of Shiga toxin-producing *Escherichia coli* toxigenic genes. Therefore, Shiga toxin-producing *Escherichia coli* may possibly be transferred to human with contribution of human foodborne infection.
SISUKORD

LÜHIKOKKUVÕTE..3
ABSTRACT..4
SISUKORD ...5
LÜHENDITE LOETELU..6
SISSEJUHATUS ..8
TÄNUVAALDUSED...10
1. KIRJANDUSE ÜLEVAADE11
 1.1. Ulukiliha seondauvad toidupatogeenid ...12
 1.2. *Shiga*-toksiine tootev *Escherichia coli* (STEC)16
 1.3. Ulukiliha seonduvad teised olulised haigustekitajad23
 1.4. Ulukite küttimisega seonduvad hügieenireeglid ja tavad25
2. UURIMISTÖÖ EESMÄRGID ...30
3. MATERJALID JA METOODIKA ...31
 3.1. Proovimaterjal ..31
 3.2. Proovivõtmise metoodika ..31
 3.3. Patogeenide tuvastamise metoodika ...32
 3.4. Statistiline analüüs ...33
4. TULEMUSED ..34
 4.1. Ulukirümpade uuringud ...34
 4.2. Veise rümpade uuringud ..37
5. ARUTELU JA JÄRELDUSED ..38
6. SOOVITUSED JA ETTEPANEKUD ..40
KOKKUVÕTE ...41
KASUTATUD KIRJANDUS ..42
PREVALENCE OF *SHIGA* TOXIN-PRODUCING *ESCHERICHIA COLI* IN LARGE
GAME AND BOVINE CARCASSES IN ESTONIA ...51
LISAD ..53
LISA 1. Metoodiline skeem *Salmonella* spp. tuvastamiseks ja uurimiseks54
LISA 2. Metoodiline skeem *Campylobacter* spp. tuvastamiseks ja uurimiseks55
LISA 3. Metoodiline skeem *Shiga*-toksiine tootva *E. coli* tuvastamiseks ja uurimiseks ...56
LISA 5. Proovivõtukohad pödra ja veise rümbal (tuletatuna standardist EVS-ISO 10764:2011) 58
LUHENDITE LOETELU

ACC aeroobsete mikroorganismide kolooniate arv (*aerobic colony count*)
BFR Saksamaa Föderaalne Riskihindamise Instituut (*Bundesinstitut für Risikobewertung*)
BGA brilliantrohelise agar (*Brilliant Green Agar*)
BPW puhverdatud peptoonvesi (*Buffered Peptone Water*)
DFD kuiv, tihe ja tume (*dry, firm and dark*)
DNA desoksüribonukleinhape (*deoxyribonucleic acid*)
ECDC Euroopa Nakkushaiguste Tõrje ja Kontrolli Keskus (*The European Centre for Disease Prevention and Control*)
EFSA Euroopa Toiduohutusamet (*The European Food Safety Authority*)
EHEC enterohemorraagiline *Escherichia coli*
EL Euroopa Liit
EMÜ Eesti Maaülikool
et al. ja teised (*et alii*)
EVS Eesti Vabariigi Standard
GBS Guillain-Barre sündroom (*Guillain–Barré syndrome*)
HIV Inimese immuunpuudulikkuse viirus (*Human immunodeficiency virus*)
ISO Rahvusvaheline Standardiseerimise Organisatsioon (*International Organization for Standardization*)
mCCDA söe-tsefoperasoon-desoksükolaatagar (*charcoal-cefoperazone-deoxycholate agar*)
MKTTB Müller-Kaufmann’i tetrationaat puljong (*Muller-Kauffmann tetrathionate broth*)
mTSB modifitseeritud trüptoon-soja puljong (*Modified tryppticase soy agar*)
OIE Maailma Loomatervise Organisatsioon (*The World Organization for Animal Health*)
PCR polümeraasi ahelreaktsioon (*polymerase chain reaction*)
pH vesinikeksponent
RVSBRappoport-Vassiliadise-soja puljong
SIRS süsteemne põletikureaksiooni sündroom (*Systemic Inflammatory Response Syndrome*)
STEC *Shiga*-toksiine tootev *Escherichia coli* (*Shiga* toxin-producing *Escherichia coli*)
VTEC verotsütotoksiine tootev *Escherichia coli* (*Vero* cytotoxin-producing *Escherichia coli*)
XLD ksüloos-lüsiin-desoksükolaat agar (*Xylose lysine deoxycholate agar*)
SISSEJUHATUS

Zoonootilised mikroorganismid – näiteks viirused, bakterid ja parasiidid võivad olla potentsiaalseteks ohullikateks nii inimtervisele kui loomadele (Kemper et al., 2006: 1). Kodu- ja metsloomad on suure tõenäosusega zoonootiliste patogeenide kandjateks, kuid enamik senistest epidemioloogilistest uurimustöödest on kajastanud farmiloomade ning zoonoossete toidupatogeenide seoseid. Toidupatogeenide levimust ulukite rümpadel ning lihas on vähe uuritud ning mõnedes riikides k.a. Eestis ei ole temaatilisi uurimustöid senini teostatud.

Enamikel juhtudel põhjustavad liha tarbimise kaudu tekkivaid bakteriaalseid enteraalseid toidumürgitusjuhtumeid *Salmonella* spp, *Campylobacter* spp ning *Escherichia coli*, kusjuures viimase puhul on ulatuslikke ning raskekujulisi haiguspuhanguid põhjustanud Shiga-tokiisine produtseeriv *Escherichia coli* (edaspidi STEC) (Newell et al., 2010).

Eeltoodust tingituna keskendus uurimistöö STEC tuvastamisele suurulukite ning veiste rümpadel. Täiendavalt analüüsi suurulukite rümbapreede *Salmonella* spp. ja termofülsite kampülbakterite esinemuse suhtes.

Töö teine osa kirjeldab proovimaterjali, proovivõtmise metoodikat, analüüsi metoodikaid ning andmete statistilist analüüsi.

Töö viimane osa käsitleb uurimustöö tulemusi ning sellega seonduvat arutelu. Lisaks antakse soovitused ning ettepanekud edasiste uuringute planeerimiseks nii riikliku seire kui teadustööde tasandil ning praktilised soovitused jahimeestele.
TÄNUAVALDUSED
Uurimistööd finantseeriti: Põllumajandusministeeriumi rakendusuuringu projektist "Campylobacter spp., Listeria monocytogenes ja verotoksilise Escherichia coli-ga seonduvate toiduohutuse riskide hindamine Eestis" (leping nr T13057VLTH).

Eesti Teadusagentuuri grandi projektist 9315. "Listeria monocytogenes ja Campylobacter spp. epidemioloogilised uuringud Eesti toiduahelas".

Täname koostöö eest: Chef Foods OÜ-d, Veterinaar- ja Toidulaboratooriumi, Eesti Maaülikooli VLI Toiduteaduse ja toiduainete tehnoloogia osakonda, Eesti Maaülikooli VLI Toiduhügieeni osakonda.
1. KIRJANDUSE ÜLEVAADE

Ulukite lihakehad ning rümbad võivad saastuda zoonootiliste patogeenidega erinevates keskkondades nüüd kütteimiskohas, ulukite kogumise ja töötlemise keskuses nahatustamise protseduuride ajal või ehabahügieenilisel ladustamisel. Veelgi enam, ebaõigest laskmisest tingituna võib tekkida uluki liha ulatuslik ristsaastumine, eriti kui tegu on lasuga mille korral tabatakse kütetavat makku, selga või tagakintsu. Ristsaastumist võib esineda ka kütteimiskohas siseelundite eemaldamise ajal kui töö teostaja ei ole piisavalt hoolas ning põhjustab soolesisaldise sattumise lihale. Käitlemisettevõttes on kõige suurem võimalus saastada rümpa nahatustamise ajal nii rooja kui naha pinnal oleva mustusega nt karvadega, mis omakorda on suure hulga bakterite allikaks. Suurulukid ning veised on zoonootiliste patogeenide nt. *Shiga*-toksiine produtseeriva *Escherichia coli* (STEC), salmonellade, termofiilsete kampülobakterite ja mitmete teistse patogeenide kandjateks (Atanassova et al., 2008: 418; Paulsen et al., 2012: 611; Diaz-Sanches et al., 2013: 280).
1.1. Ulukilihaga seondaavad toidupatogeenid

Võrreldes põllumajandusloomade liha tarbimisega on ulukiliha tarbimine väike, kuid ulukiliha osatähtsus toiduna on suurenemas (Atanassova et al., 2008: 414).

Metsloomade haigusi saab jaotada kolme gruppiga.

Esimesse gruppia kuuluvad infektsioonid, mis kanduvad üle otse loomalt inimele nt marutõbi. Marutõbi kestab Euroopas kõige rohkem pärast Teist maailmasõda, praeguseks on haiguse üle saavutatud kontroll, sest paljudes asjakohastes riikides rakendatakse edukalt vaksineerimise programme.

Teise gruppia kuuluvad infektsioonid, mis kanduvad üle toiduga nt trihinnelloos.

Kolmandasse gruppia kuuluvad infektsioonid, mis kanduvad edasi vektorite vahendusel nt tulareemia (Šatran ja Treml 2014: 107).

EL-s on ülevaade tähtsamatest zoonoosidest, mis võimaldab teha toiduohutuse alaseid otsuseid vastavate riskide maandamiseks. Tähelepanuvääärne riskide vähendamine on toimunud trihhinelloosi ning marutaudi osas (Šatran ja Treml 2014: 123).

Trihhineloos, tuntud kui keeritsusstõbi, on liha- ja kõigeloolistel loomadel, hobustel, lindudel ja inimestel täiskasvanuna peensooles ja vastsena lihakoes parasitesite erivate Trichinella perekonna ümarusside tekitatud haigus. Seni on Euroopas avastatud neli Trichinella liiki: 1) Trichinella spiralis ehk seakeeritsuss leidub ka nt tuvide hulgas, 2) Trichinella nativa ehk metskeeritsuss on resistentne külmumisele ning seda leidub enamasti Skandinaavia karnivooride hulgas, 3) Trichinella britovi ehk britovi keeritsuss kõige enam levinum liik, mis levib eelkõige karnivooridel ja 4) Trichinella pseudospiralis ehk ebakeeritsuss, võib nakatada nii imetajaid kui linde (Šatran ja Treml 2014: 115).

Morse et al., (2012) soovitab jagada metsloomade zoonoosid kolme haiguse levikut kajastava staadiumi:

1. Haiguspuhangu tekke-eelne staadium (Pre-emergence stage) – kus eeldatav patogeen on algsest oma loomulikus reservuaaris, kuid ökoologilise tasakaalu muutumise tagajärjel kendub patogeen üle erinevatele peremeesloomadele.
2. Piiritetud alaga haiguspuhangu esinemise staadium (Localised emergence stage), kus patogeenid kanduvad üle loomadelt inimestele haigustekitajaid sisaldava toorme töötlemisel, aerosoolide või piisknakkuse vahendusel.
Suure tõenäosusega esineb toidupatogeenide ülekanne inimesele tarbides alaküpsetatud ulukiliha, eriti kabjaliste liha (Gortazar et al., 2014: 26). Toidust, eelkõige lihast, tingitud haiguspuhangu saavad enamasti alguse sellest, et loomad on nende haigustekitajate kandjad ning loomadelt omakorda jõuavad patogeenid ristsaastumise teel toiduni ning saastunud toidu söömisel inimeseni. Enamasti on loomad toidumüügistusi põhjustavate haigustekitajate terved kandjad ehk loomad kannavad patogeene seedetraktis või oma nahapinnal ilma, et ise haigestuks (asümtomaatiline kandvus).

Salmonella spp., *Campylobacter jejuni/coli, Yersinia enterocolitica* ning VTEC/STEC põhjustavad enim (~10%) toidupõhiseid haiguspuhanguid, kusjuures viimaste tõsidus sõltub paljuski puhangu põhjustanud patogeenitüve(de) virulentsusfaktoritest, haigustekitajate arvust toidus, nakkuse geograafilisest asukohast ning nakkusallikast (Norru ja Buncic 2008: 14).

Salmonella spp.

Campylobacter spp.

Kampülobakterioos või sellest põhjustatud sekundaarne infektsioon lõppeda inimese surmaga (Fica et al., 2011: 212; Kuwabara, 2011: 238).

Kõige enam põhjustavad kampülobakterioosi *C. jejuni, C. coli* ning enamasti on tegemist suhteliselt kerge haigusega ehk iseenesest mõõduva kõhulahtisusega, mis ei vaja antibiootikutuntemaapiat ning haigestunu hospitaliseerimist (Norrung ja Buncic, 2008: 15; Park, 2002: 177).

Campylobacter spp. on paljude riikides põhiliseks inimeste bakteriaalsete enteraalsete haigestumiste põhjustajaks ning Euroopa Liidus (EL) on kampülobakterioos kõige sagedamini esinev zoonoos (EFSA 2015: 3; Rosenquist et al., 2009: 1742, 1743; Hänninen et al., 2003: 1391, 1392). Aastal 2013 registreeriti Euroopa Liidus ühtekokku 214,779 termofiilsetest kampülobakteritest põhjustatud haigusjuhtumit, mis teeb saja tuhande inimese kohta EL-is keskmiselt 64,8 ametlikult registreeritud haigusjuhtumit (EFSA, 2015: 3).

Ulukid võivad olla termofiilsete kampülobakterite kandjad nt leiti Diaz-Sanchez jt. (2013: 277) uuringus, et metssigade rümpade saastatus kampülobakteritega erinevates ulukiliha käitlemisettevõtetes oli 33% kuni 100%.

1.2. *Shiga-toksiine tootev Escherichia coli* (STEC)

Escherichia coli ning STEC iseloomustamine

Escherichia coli (*E. coli*) on Gram-negatiivne, fakultatiivselt aeroobne ning liikuv pulgakujuline bakter. *Escherichia coli* kuulub *Enterobacteriaceae* sugukonda ning on loomade ning inimese sooletrakti normaalse mikroflora esindaja. Eelnevast tingituna on ta toidu- ja veehügieeni seisukohast olulise indikaatorbakterina tuntud nüüdseks enam kui sajand. *E. coli* bakterite leidumine toidus või vees viitab otseselt fekaalsele saastusele ning seega ka potentsiaalsete haigustekitajate leidumisele. Mitte-virulentset *E. coli* bakterit peetakse suhteliselt ohutuks, kuid nõrgendatud immuunsüsteemiga isikutel võib ta mõnikord haigestumist põhjustada, seepärast rühmitatakse ta tinglike ehk oportunistlike patogeenide hulka.

STEC tüvedele viidatakse sageli kui eneterohemorraagilisele *E. coli* (EHEC) bakteritele, mis teadaolevalt produseerivad ühte või kahte *Shigella dysenteriae* bakteri poolt produseeritavatele toksiinidele sarnast toksiini, mistõttu nimetatakse neid *Shiga*-toksiin 1-ks (Stx1) ning *Shiga*-toksiin 2-ks (Stx2). Kuna toksiini mõju on eelkõige Vero-rakkudele, nimetatakse STEC’i tüvesid ka verotoksiliseks *E. coli*-ks. STEC rühma liigitatakse *E. coli* bakterid, kel on võime toota tsütotoksiine ehk *Shiga*-toksiine. Mainitud toksiinide mõju peatub rakus valgusüntees ning rakk hakkub. Tänapäeval on teada üle 300 STEC serotüübi ning mitte kõik ei ole nendest inimesele patogeensed. STEC bakteereid leidub pinnases, vees, toidus ning neid on isoleeritud ka tervete inimeste sooletraktsist ehk tegemist on oma haigustekitajate kandjatega. Tuleb mainida, et bakteri võime toota *Shiga*-toksiini ei muuda teda veel iseenesest patogeenses, sest inimese nakatamiseks on vajalik ka täiendavate virulentusfaktorite olemasolu ning nende avaldumine (Wickham et al., 2006: 819, 820). Tänapäeval on teada, et STEC tüvede väga erinevad patogeensed omadused on tingitud STEC’i tüvete võime toota *Shiga*-toksiini ja toksiinidele sarnast toksiini alatüübi ja alatüübile.

Shiga-toksiine kodeerivad geenid (*stx*) jaotatakse kahte suurde perekonda – *stx1* ja *stx2*, mis mõlemad sisaldavad erinevaid alatüüpe. Scheutz et al. (2012: 2951) esitas *stx1* ning *stx2* standardse nomenklatuuri ja tüpiseerimise meetodi, kus toksiini geenide järjestuse alusel klassifitseeritakse *stx1* kolmeks alatüübiks (a, c ja d) ning *stx2* alatüüpideks a, b, c, d, e, f ja g. Mitmete autorite poolt on leitud seoseid raskete haigussüptomite ning haigustekitajate poolt ekspresseeritavate toksiini alatüüpide vahel. Erinevates töödes on viidatud statistiliselt olulisele korrelatsioonile bakteri poolt ekspresseeritava toksiini
alatüüpide stx2a, stx2c ning verise kõhulahtisuse ja HUS väljakujunemise vahel (Ethelberg et al., 2004: 842; Persson et al., 2007: 2020).

Shiga-toksiine produtseeriv E. coli (STEC) levimus suurulukitel ning veistel

Kariloomade rooja ning nahapinda peetakse kõige olulisemaks E. coli O157 allikaks. Veiste seedekulgla eemaldamisel võib saastumine toimuda roojas leiduva E. coli kandumisel lihale, kusjuures saastumisprotsendid varieeruvad 0,0% - 27,8%-ni. Nahalt lihale ülekandumine on varieerunud 4,5% - 56%-ni. Tapamajas, kui loomad on paigutatud puhkelahtritesse, võib E. coli O157 ristsaastumine toimuda nii loomade endi vahel kui ümbritsevast keskkonnast nt saastunud pindade kaudu loomale (Nastasijevic et al., 2009: 101). Järelduseni, et rümpade saastumine toimub eelkõige nahatustamisel ning seedekulgla
eemaldamisel, on jõudnud mitmed uurimustööde autorid (Martin ja Beutin, 2011: 100; Hussein ja Bollinger et al., 2005: 678; Jay, et al., 2004: 1; McEvoy et al., 2003: 257,261).

2008. aasta Serbia uuringus võeti 115 veise rooja proovi ning 26 veiserümbma proovi, mille analüüside tulemusel selgus, et E. coli O157 esinemus veister sõltus suuresti aastaajast. Patogeen tuvastati roojas 3,1% loomadel just soojematel aastaegadel nt kevadel ja suvel. Seevastu talvel ei tuvastatud ühtegi E. coli O157 positiivset proovi. Globaalselt on E. coli O157 esinemuse varieeruvus väga suur, ulatudes 0,01%-st kuni 54,2%-ni. Mitte-O157 STEC esinemuse varieeruvus on olnud alates 1,7%st kuni 62,5%-ni (Nastasijevic et al., 2009: 103).

STEC stx-geeni on leitud nii rooja kui liha proovides metssigadelt ja mäletsejalistel nagu hirv, põder ja metskits. Ulukitest peetakse Shiga-toksiini produtseeriva E. coli sagedaimaks kandjaks just metssiga, kuna viimasel on suur liikumisega seonduv territoorium ning
kokkupuude koduloomade ja inimesega on teiste ulukitega võrreldes suurem (Diaz-Sanchez et al., 2013: 280; Sanchez et al., 2010: 422; Navarro-Gonzales et al., 2013: 688).

Hispaanias registreeriti 701 uluki proovi hulgast 200 positiivset stx1-geeni ja/või stx2-geeni, millest 120 positiivset proovi saadi metskitsedelt, 64 metssigadelt ning 16 rebastelt. Sama uuringu raames leiti STEC tüvesid metskitsedelt 52,5% (94/179), metssigadelt 8,4% (22/262) ja rebastelt 1,9% (5/260) (Mora et al., 2012: 2580).

Statistiliselt esines ühe Hispaania uurimuse tulemusena metssigadel stx-geeni isastel metssigadel tunduvalt rohkem võrreldes emastega (Diaz-Sanches et al., 2013: 277). Erinevate uurimistööde tulemusena on nii E. coli O157:H7 kui mitte-O157 STEC isolaatidel, võrreldes stx1 geenidega, tuvastatud rohkem stx2-geene (Diaz-Sanches et al., 2013: 277; Sanchez et al., 2010: 422; Kemper et al., 2006: 3). Seevastu on eae-geeni tuvastatud märgatavalt vähem (Diaz-Sanchez et al., 2013: 279; Diaz-Sanchez, et al., 2012: 181; Sanchez et al., 2010: 422).

Hirvlasi peetakse EHEC O157 tüve kandjateks kariloomadele, kusjuures haigesteitajad kantakse koduloomadele hirvlaste rooja vahendusel (Miko et al., 2009: 6462). Kui veistel
ja teistel farmiloomadel esineb suurema tõenäosusega STEC nii roojas kui lihakehadel, siis metsloomadel on STEC enamasti tuvastatud roojana proovidest ning suhteliselt harva rümpaproovidelt (Gill, 2007: 153). Edasiste uuringutega on vaja kindlaks teha, kas EHEC ja STEC ulukiliha kontaminatsioon on seotud eelkõige halbaidest hügieeni tingimustest lihakäitlemisel või esineb metsloomade populatsioonis tervikuna rohkem STEC tüvesid (Miko et al., 2009: 6462).

Salmonella spp. levimus ulukitel

Eelkõige on avastatud *Salmonella* spp. suhtes positiivseid proove ulukite roojast ning märkimisväärsesti vähem rümpadelt. Rümpade kontaminatsioon seondatakse ebahügieeniiliste töövõtetega ulukirümpade algtöötllemisel (Paulsen et al., 2012: 611).

Salmonella erinevaid serovariante on avastatud ulikutelt sageli, kusjuures Levinuim on S. Typhimurium (Giorda et al., 2014: 162; Diaz-Sanchez et al., 2013: 277; Chiari et al., 2013: 2; Paulsen et al., 2012: 610-611; Little et al., 2008: 540). Samuti on suhteliselt sageli tuvastatud S. enterica subsp. enterica (Sannö et al., 2014: 5) S. enterica subsp. diarizonae
Fakti, et metssead võivad olla ühed kõige sagedasemad salmonellade kandjad, on nentinud mitmed autorid (Chiari et al., 2013: 1; Diaz-Sanchez et al., 2013: 275; Navarro-Gonzales et al., 2013: 686-688; Zottola et al., 2013: 164; Vieria-Pinto et al., 2011) Metssigadel on enim tuvastatud Salmonella serovariante S. Typhimurium (Vieira-Pinto et al., 2014: 225; Chiari et al., 2013: 3); S. Enteritidis (Chiari et al., 2013: 3); S. Ball (Chiari et al., 2013: 3) ning S. Rissen (Vieira-Pinto et al., 2014: 225).

Salmonella levimuse uuringuid on tehtud ka metskitsedel. Ameerika Ühendriikides tehti kindlaks valgesaba hirvedel roojas leiduvad Salmonella enterica subspecies enterica serovarid S. Lichfield, S. Dessau, S. Infantis ning S. Enteritidis (Renter et al., 2006: 701). Samas näitavad mitmed uurimustööd, et Salmonella levimus ei pruugi ulukitel olla väga suur, eriti võrreldes Campylobacter või STEC levimusega. Osades uuringutes, kus uuriti Salmonella levimust metssiga de ja metskitsede populatsioonis, ei ole antud patogeeni tuvastatud (Obwegeser et al., 2012: 151; Atanassova et al., 2008: 416; Kemper et al., 2006: 4).

Campylobacter spp. levimus ulukitel

Kuigi kampülobaktereid seostatakse enamast linnuliha ning toorpiimaga, on bakterieid isoleeritud ka taimsetest toiduainetest ning teiste loomalihakeid lihast. Sõralised, nii kariloomad kui ka ulukid, on olulised kampülobakterite kandjad ning patogeen võib inimesele kanduda liha käitlemisel ning saastunud termiselt väähetöödeldud lihatoitude tarbimisel. Ulukite jahe taasaine on probleemiks mittehügieenieline uluki lihakehade algpõõtlemise, kus roofa sattumisel rämbale kantakse rämbale ka kampülobakterid ning liha kaudu jõuavad nad inimeseni (Carbonero et al., 2014: 116). Ulukitel on isoleeritud kampülobaktereid nt hirvlastelt (0-6%) ning metssigadel (0-66%) (Carbonero et al., 2014: 116). Metssigadel kampülobakterite levimuse varieeruvust kinnitavad paljud teadusuuringud (Carbonero, et al. 2014: 119; Diaz-Sanchez et al., 2013: 278; Navarro-Gonzalez et al., 2013: 688; Atanassova et al., 2008: 418; Little et al., 2008: 540). Kampülobakterite liikidest on metssigadel tuvastatud Campylobacter coli (Carbonero et al., 2014: 119; Navarro-Gonzalez et al., 2013: 688; Atanassova et al., 2008: 416;
Wahlström et al., 2003: 77), *Campylobacter jejuni* (Carbonero et al., 2014: 119; Diaz-Sanchez et al., 2013: 277; Navarro-Gonzalez et al., 2013: 688; Atanassova et al., 2008: 416; Wahlström et al., 2003: 77) ning *Campylobacter lanienae* (Carbonero et al., 2014: 119).

1.3. Ulukilihaga seonduvad teised olulised haigustekitajad

Jahimees peab olema kursis ulukite haigustega ning omama informatsiooni nenest haigustest, mis on epideemilise iseloomuga. Lisaks ulukite loomakaitse seisukohast haigusnähtude adekvaatsele hindamisele on vajalik tunda ka loomadelt inimesele ülekanduvate haigustekitajate poolt tekitatavaid patoloogilisi muutusi jahiloomadel. Eeltoodu võimaldab õigeaegselt teha liha inimtoiduks kõlblikkuse otsuseid ning ennetada või vähendada inimese haigestumise riski. Toiduohutuse ning lihahügieeni alased teadmised on vajalikud vajalikud ka kütide tervise kaitseks, sest just kütil on esimene kontakt kütitud või hukkunud metsloomaga (Schulte 2014: 367).

Nagu varasemalt mainitud saab metsloomade haigusi jaotada kolme gruppiga.

Esimese gruppiga kuuluvad haigused, mis kanduvad üle otse loomalt inimesele nt marutõbi.

Teise gruppiga kuuluvad infektsioonid, mis kanduvad üle toiduga nt trihinelloos.

Ulukitelt ülekanduvad haiguste, viiruse ja patogeenide osakaal nii koduloomadele kui inimestele on suurenemud. Vastaval OIE (Maailma Loomatervishoiu Organisatsioon) andmetel võivad nakkushaigused levida uude geograafilisse piirkonda (Giliberti et al., 2015: 271,272).

määral esineb *Brucella melitensis*’e ja *Brucella abortus*’e poolt põhjustatud infektsioone (Giliberti et al., 2015: 278,281; Billinis 2013: 69).

Ulukitest ja kariloomadel on võimalik haigusi levitada inimestele seoses ebapiisavate hügieenitingimustega liha käitlemisel. Loomade saastumine haigustekitajatega võib toimuda ühise karjamaa kaudu, kuhu sattuvad nii haigustekitajate kandjad kui ka nendest vabad loomad. Olulisel kohal on ka jahi- ning põllumajandusloomadega otsene kokkupuude ning ebapiisavast isiklikust hügieenist tingitud vead.
1.4. Ulukite küttimisega seonduvad hügieenireeglid ja tavad

Jahipidamine ei toimu alati ideaaltingimustes seetõttu peab olema tagatud jahil ka elementaarne hügieen. Mõnikord on tapetud ulukite vedamine laskmiskohast autoni raskendatud nii ümbritseva keskkonna kui ka ilmastiku olude tõttu (Deutz ja Fötschl 2014: 214).

Põhilised hügieeniga seonduvad riskid (Deutz ja Fötschl 2014: 214) ulukilihale on järgmised:

1. Liiga kaugelt laskmine;
2. Mitte puhas lask;
3. Lastud looma transport autoni;
4. Hilinenud lahang;
5. Hilinenud rümба mahajahutamine soojematel aastaaegadel ning rümба külmumine külmumisel aastaaegadel;
6. Suurenenud osakaal jahikoerte küttimisel ning suurtes jahigruppides küttimine.

“Küttimise kümme käsku seoses küttimise hügieeniga” (Deutz ja Fötschl 2014: 214) mis on seotud kriitiliste kontrollpunktidega:

1. Looma käitumise vaatlemine enne laskmist;
2. Jahipidamisviis - jahikoerte kasutamine alandab liha kvaliteeti ning suureneb ristsaastumise oht);
3. Laskmine – distants; õige relva ning jahikaliibri valik;
4. Välised tunnused loomal – haiguskolded, parasiidid, mädapaised;
5. Looma lahang ehk sisikonna eemaldamine – õigeaegselt, põhjalik;
6. Siseorganid ja nende korrasolek;
7. Looma veretustamine ja puhastamine – õigeaegselt ja kasutades ainult puhast joogivett;
8. Rümба jahutamine – õigeaegselt ja korralikult;
9. Transport – piisavalt puhastes tingimustes ning umbumist vältivalt;
10. Edasine jahutamine, ladustamine ning töötlemine.
Küülit on raske määrama pikema karvastikuga loomadel, eriti talvekuudel, siseorganite asukohta, mis võib viia ebatäpsete lasunite ning mis omakorda põhjustab liha ristasaastumist, Selliseid olukordi esineb eriti vähese jahikogemusega kütidelt (Deutz ja Foehschl 2014: 216).

Enne tulistamist tuleb jälgida järgmisi näitajaid:

1. Looma kehakaal;
2. Keha tasakaal;
3. Looma käitumine karjas ja ümbristsevas keskkonnas;
4. Looma karvastik, nähtavad vigastused ja haituskolded;
5. Hääeltsused;
6. Kõhulahtisuse tunnused;

Jahipidamisel tuleb kasutada ainult hästi dresseeritud jahikoeri, vältimaks uluki üleliigset stressi ning kahjustuste tekitamist lihakehole. Bioloogiliste riskidega arvestades ei tohiks jahikoeraga jaht kesta üle 2,5-3 tunni ning soojematel perioodidel (temperatuur üle +12°C) ei tohiks jaht kesta üle 1,5 tunni (Deutz ja Fütschl 2014: 215).

Lahkamine küttimisel

2. UURIMISTÖÖ EESMÄRGID

Töö hüpoteesid:

1. Eesti suurulukite ning veiste rümpad on saastunud Shiga-toksiine tootva \(E. \text{coli} \) bakteritega sarnasel tasemel.
2. \(Shiga \)-toksiine tootva \(E. \text{coli} \) levimuse näitajad sõltuvad sõltuvad suuruluki liigist.
3. Suurulukite rümpadel esineb saastumist nii \(Salmonella \) kui ka \(Campylobacter \)-ite liikidega.

Töö eesmärgid:

1. Anda ülevaade ulukilihaga seonduvate haigustekitajate ning nende minimaliseerimise võimalustest lihas;
2. Analüüsida \(Shiga \)-toksiine tootva \(E. \text{coli} \) (STEC) levimust Eesti suurulukite ning veiste rümpadel ning \(Campylobacter \) spp. ja \(Salmonella \) spp. levimust suurulukite rümpadel.
3. MATERJALID JA METOODIKA

3.1. Proovimaterjal

Ulukirümba pinnaproovid

Veiserümba pinnaproovid

3.2. Proovivõtmise metoodika

Suurulukite ning veiste rümpadelt proovide võtmisel lähtuti standardis EVS-ISO 17604 (Eesti Standardikeskus 2011) kirjeldatud nõuetest.

Proovide võtmisel kasutati mittedestruktiivset meetodit ehk proovid võeti abrasiivse käsnaga ning standardis kirjeldatud proovivõtukohtadest: reie sise- ja välisküljelt, kubeme piirkonnast ning rinna- ja kõhuõõnsuse sise- ja välispinnalt.

Abrasiivse käsnas meetodit kasutatakse eelkõige patogeensete mikroobide tuvastamiseks suurematelt pindadel. Proovivõtupindala peab katma vähemalt 400 cm².

Proovide võtmiseks vajalikud proovivõtukooplektid (3M™ Hydrated-Sponge with Buffered Peptone Water Broth 2 Gloves HS10BPW2G) pärinesid tootjalt 3M (Minneapolis USA).
3.3. Patogeenide tuvastamise metoodika

Uluki- ning veiserümpadelt võetud proovid analüüsitati patogeenide tuvastamiseks Veterinaar- ja Toidulaboratooriumis Tartus.

Patogeenide tuvastamine teostati vastavalt kehtivates standardites kirjeldatud metoodikatele, kusjuures *Campylobacter* spp. ning *Salmonella* spp. tuvastamisel kasutati konvensioonalseid mikrobioloogilisi metoodikaid, *Shiga*-toksiine tootva *E. coli* määramilisel seevastu reaalaja polümerasaahelreaktsioonipõhist meetodit tuvastamaks toksiiniperekonnale spetsiifilisi geene ning seejärel seonduvaid serogruppe O157, O111, O26, O103 ja O145.

Uurimismetoodika põhines järgmistel kehtivatel standarditel:

Salmonella spp.

Abrasiivsele käsnale lisati 90 ml puhverdatud peptoonvett (BPW) ning segati stomacheris 1 minuti jooksul. Pärast 18 ± 2 h eelrikastamist (37 ± 1) °C juures teostati ümberkülvid Rappoport-Vassiliadis`e (RVS) ning Müller-Kaufmann`i tetrationaadi (MKTTn) selektiivsetesse rikastussöötmetesse ning viimaseid inkubeeriti vastavalt (41,5 ± 1) °C ning (37 ± 1) °C juures 24 ± 3 h. Järgnevas isoleerimisetapis kasutati ksüloos-desoksükolaadi (XLD) ning brilliantrohelise (BG) agarsöötmeid, mida inkubeeriti (37 ± 1) °C juures 24 ± 3 h. Inkubeerimisjärgselt hinnati tüüpilise kasvu olemasolu või puudumist nimetatud agarsöötmeil. Kõikides analüüsietappides kasutatud söötmed pärinesid tootjalt Oxoid Ltd. (Basingstroke UK).

Salmonella spp. analüüsiseem on esitatud Lisas 1.

Campylobacter spp.

Abrasiivsele käsnale lisati 90 ml Bolton’i rikastussöödet ning segati stomacheris tingimustes 37 °C juures 5 ± 1 h ning seejäre (41,5 ± 1) °C juures 44 ± 4 tundi. Seejäre kanti 10 µl uuritavat rikastusmaterjali modifitseeritud söe-tsefoparsoon-desoksükolaadi (mCCDA) ning Skirrow agarsöötmetele ja inkubeeriti 41,5 ± 1 °C juures 44 ± 4 h. Sellele järgnevalt hinnati iseloomuliku kasvu esinemist või puudumist agarsöömile Kõikides analüüsietappides kasutatud söötmed pärinesid tootjalt Oxoid Ltd. (Basingstroke UK).

Campylobacter spp. analüüsiskeem on esitatud Lisas 2.

Shiga-tokiinide tootev _Escherichia coli_

Eelnimetatud viie STEC serogrupi tuvastamiseks kasutatava ülalnimetatud ISO tehnilise spetsifikatsiooni puhul on tegemist kvalitatiivse määramismeetodiga, kus selektiivsele rikastamisele järgneb toksiiniperekondade _stx1_ ja _stx2_ geenide määramine. Selektiivse rikastussöötmena kasutati modifitseeritud trüptoon-saja puljongit (mTSB, Oxoid Ltd., Basingstroke, UK), mis sisaldas novobiotsiini (Sigma–Aldrich) lõppkontsentratioonis 16 mg/l. Genoomse DNA ekstraktsioonil kasutati kommertsiaalset komplekti RTP® Bacteria DNA Mini Kit (Stratec Molecular GmbH, Berlin, Germany) vastavalt tootjapoolsetele juhistele. Geenide _stx1_ ja _stx2_ osas positiivse tulemuse andnud proovide andmete põhjal edisised molekulaarsed uuringud viiele uuritavale serogrupile spetsiifiliste geenide ja intimiini kodeeriva _eae_ geenide olemasolu kindlakstegemiseks.

Toksiinigeenide _stx1_ ja _stx2_ ning serogrupile spetsiifilise geeni tuvastamine viitab haigustekitaja presumptiivsele esinemisele uuritavas proovis.

Shiga-tokiini tootv _E. coli_ analüüsiskeem on esitatud Lisas 3.

3.4. Statistiline analüüs

Levimusnäitajate ning nende usaldusintervallide arvutamisel kasutati online-kalkulaatorit VassarStats (Lowry 2015). Gruppide statistiline võrdlemine teostati kasutades Fisheri täpset testi (Lowry 2015). Tulemus loeti statistiliselt olulisena kui p-väärtus < 0,05.
4. TULEMUSED

4.1. Ulukirümpade uuringud

Campylobacter spp. ja Salmonella spp. suhtes positiivseid suurulukite rümbaproove ei tuvastatud (tabel 1).

Shiga-toksiini tootva E. coli tuvastamiseks ning serogruppide O157, O111, O26, O103 ja O145 määramiseks kasutati reaalaja polümerasahelreaktsioonil (Real-Time PCR) põhinevat meetodit. Meetodi kohaselt uuriti proovimaterjalist esmalt stx1 ja stx2 geenide olemasolu (esmame skrining) ning kui üks või teine neist tuvastati või tuvastati proovist mõlemad geenid, siis määrati millise serogrupiga (kirjeldatud viiest) on tegemist. Lisaks määrati eae geeni olemasolu, kuna viimane kodeerib intimiini valku, mis on oluline virulentsusfaktor. Molekulaarne sõeluuring jahiulukite rümpadelt võetud pinnaproovidest näitas STEC toksiinigeenide esinemist koguni 32 (53%; CI95 40,89% - 66,14%) proovis (tabel 2), kusjuures 17 (53,1%) juhul tuvastati vaid stx2 esinemine ning 14 (43,8%) juhul oli tegemist stx1 ja stx2 kombinatsiooniga. Eraldi stx1 geeni ei tuvastatud üheski analüüsitud proovis.

Serogrupp O157, O145, O26, O103 ja O111 esinemus tuvastati vastavalt 15 (46,9%), 19 (59,4%), 1 (3,1%), 16 (50%) ning 0 (0%) korral positiivsetest proovidest. Geen eae tuvastati 31-s (96,9%) stx suhtes positiivses proovis.

Andmete statistilise töötluse tulemusena leiti, et STEC levimus metssea ja põdra rümbaproovides oli statistiliselt oluliselt erinev (p < 0,05). Statistiliselt oluline erinevus (p < 0,05) tuvastati samuti viie STEC serogrupi levimuses ning see oli tingitud eelkiige sellest, et serogrupp O26 tuvastati vaid ühel korral ning serogruppi O111 ei tuvastatud üldse. Serogruppide O157, O145 ja O103 levimuses statistiliselt olulist erinevust ei leitud (p = 0,70).
Tabel 1. *Salmonella, Campylobacter* ja STEC ulukirümpade uuringute tulemused

<table>
<thead>
<tr>
<th>Loomaliik</th>
<th>Uuritud proovide arv</th>
<th>Salmonella Posit. (%)</th>
<th>Campylobacter Posit. (%)</th>
<th>STEC Posit. (%; 95% CI*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metssiga</td>
<td>25</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>17 (68; 48,41-82,79)</td>
</tr>
<tr>
<td>Põder</td>
<td>30</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>10 (33,3; 19,23-51,22)</td>
</tr>
<tr>
<td>Karu</td>
<td>3</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (100; 43,85-100)</td>
</tr>
<tr>
<td>Metskits</td>
<td>2</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (100; 34,24-100)</td>
</tr>
<tr>
<td>Kokku</td>
<td>60</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>32 (53,3; 40,89-66,14)</td>
</tr>
</tbody>
</table>

Confidence interval, usalduspiirid STEC geenide proporsionaalsele levimusele

Tabel 2. Shiga-tokiini tootva *E. coli* virulentsusgeenide tuvastamine suurulkite rümpadel Eestis

<table>
<thead>
<tr>
<th>Loomaliik</th>
<th>Proovide arv</th>
<th>stx1</th>
<th>stx2</th>
<th>eae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Põder</td>
<td>30</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Metssiga</td>
<td>25</td>
<td>8</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Karu</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Metskits</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kokku</td>
<td>60</td>
<td>14</td>
<td>32</td>
<td>31</td>
</tr>
</tbody>
</table>

Joonisel 1 on välja toodud STEC serogruppide esinemine metssea rümbapinnaproovides ning joonisel 2 võrdlusena põdra rümbapinnaproovides.
Joonis 1. STEC serogruppide esimine metssea rümbapinaaproovides koos 95% usalduspiiridega

Joonis 2. STEC serogruppide esimine põdra rümbapinaaproovides koos 95% usalduspiiridega

Kui võrrelda kahel joonisel esitatud serogruppide esinemissagedust, selgub, et domineeriv serogrupp on mõlemal loomaliigil O145, millele järgnevad O103 ja O157.
4.2. Veise rümpade uuringud

Ühtekokku analüüsiti 99 veise rümbaproovi, millest 32 (32%, CI₉₅ 24% – 43%) osutusid toksiinigeenide osas positiivseteks. Toksiinigeenide stx₁ ja stx₂ esinemissageduses täheldati statistilist erinevust: stx₁ tuvastati 17 ning stx₂ 30 proovis (p < 0,05), kusjuures 15 juhul oli tegu mõlema geeni koosesinemisega. Toksiinigeenide esinemine oli sagedasem noortelt veistelt võetud proovides (40%), kuid kahe vanuserühma võrdluses toksiinigeenide esinemuses statistiliselt olulist erinevust ei leitud. Intimiini kodeeriva geeni eae olemasolu tuvastati vähem kui pooltes proovides ehk 15 juhul.

STEC viie serogrupi levimusest veise rümbapinnaproovides annab ülevaate joonis 3.

Serogrupptide O157, O145 ja O26 esinemisagedustest statistilist erinevust ei leitud ning serogruppi O111 liigituvat E. coli bakterit uuritud proovides ei tuvastatud. Serogrupile O103 geene tuvastati 11 proovis.

Ligi pooltes toksiinigeene omavates proovides (15%, CI₉₅ 9% - 25%) ülalnimetatud serogruppidele viitavaid geene ei tuvastatud.

Joonis 3. STEC serogruppide esinemine veiste rümbapinnaproovides koos 95% usalduspiiridega
5. ARUTELU JA JÄRELUSED

Antud uurimustöö näitas, et ulukiliha võib endas kanda rahvatarve isees STEC geenide kõrge levimusega uuritud proovides. Samas osutusid ka veiserümpade pinnaproovid STEC geenide osas suure suuruse ja positiivseks. Tuvastati statistiliselt oluline erinevus (p < 0,05) STEC levimuses suurulukite ning veise rümpadel. Suurulukite rümbad olid enim STEC-ga saastunud.

Olulisi virulentsusmarkereid ekspresseerivate STEC esinemine eelkõige valmistoitudes kujutab selget riski tarbijate tervisele. STEC on potentsiaalseks ohuks eelkõige riskirühmadele (lapsed, vanurid), kuid teatud virulentsusfaktorite olemasolul ning koosmõjul võivad haigestuda ka terved täiskasvanud. Seega on STEC puudumine tarbitava toidus äärmiselt oluline.

Oluline on lisada, et EFSA 2013. aasta BIOHAZ paneeli teaduslikule arvamusele toetudes võib väita, et geenide kombinatsioon stx2 (Shiga-toksiin 2 produtseerimine) ja eae (intimimi produtseerimine) omavad võrreldes teiste olulise E. coli geeni kombinatsioonidega suuremat tõsiselt haigusjuhtumite tekkes inimestel (EFSA, 2013). Läbiviidud uuringus oli antud geenikombinatsioon valdav, mis osutab inimesele virulentsete STEC tüvede olemasolule Eesti uluki ja kodulexe populatsioonis ning virulentsete haigustekitajate võimalikku ülekandmist võimaliku ülekandmist lihale ning lehma toorpiima.

Campylobacter spp. ja Salmonella spp. suhtes negatiivsed tulemused on rahvatervise seisukohalt kindlasti positiivsed, kuid järgmised ulatuslikumad uuringud peavad meid veenma selles, millised on tegelikud ulukilihaga seonduvat toiduohutuse riskid antud toidupatogeenide suhtes.

Erinevatele uurimisandmetele ning riskihinnangutele tuginedes saab väita, et kasutades kvaliteetset toorainet, järgides liha käitlemise tasandil eeskujulikke enesekontrolli ning hügieenimeetmeid, on võimalik toota toiduohutuse kriteeriumitele vastavaid lihatooteid ning hoida patogeenidest tingitud rahvatervise risk madalana.
6. SOOVITUSED JA ETTEPANEKUD

1. Tulevased riiklikud seireprogrammid STEC levimuse kindlakstegemiseks peaksid hõlmama lisaks *E. coli* O157 uuringutele ka teiste rahvatsuse seisukohast oluliste STEC serogruppide uuringuid.

2. Ulukite toidupatogeenide levimuse edasised uuringud Eestis peaksid lisaks liha maatriksi (rümbad, lihalöikus) analüüsimisele sisaldama ka soolesisaldise ning lümfisõlmede uuringuid.

5. Infektsioonide algallikate, levikuteede ning võimalike haiguspuhangute põhjuste kindlakstegemiseks on oluline laboratoorse võimekuse tõstmine riiklikul tasandil haigustekitajate virulentsusmarkerite kindlakstegemise ja molekulaartüüpiteerimise alal.

6. Tuleb tõhustada küttide teadlikkust jahi hügieenist.
KOKKUVÕTE

Vähe on teada Eesti metsloomade rollist Shiga-tokiini produtseeriva Escherichia coli, Campylobacter spp. ja Salmonella spp. kandjatena. Seetõttu, oli käesoleva töö peamiseks eesmärgiks määrata nende oluliste zoonootiliste patogeenide levimust suurulukide rümpadel. Lisaks eelnevale uuriti Shiga-tokiine tootva E. coli levimust patogeneetiliselt sarnastes geenides veiserümpadel, mis on teaduskirjanduse alusel peamiseks verotoksilise E. coli kandjaks.

Käesoleva töö tulemustest selgus, et suurulukitel leidub Shiga-tokiini tootva Escherichia coli erinevaid serogruppe. Veiserümpade analüüs näitas, et Shiga-tokiini tootev Escherichia coli on olemas ka Eesti veisepopulatsioonis. Siiski olid suurulukite rümpad statistiliselt oluliselt (p < 0,05) rohkem STEC-ga saastunud.

Kokku võeti proovid 60 jahiulukilt, mille hulka kuulus 30 põtra (Alces alces), 25 metssiga (Sus scrofa), 3 karu (Ursus arctos) ja 2 metskitse (Capreolus capreolus), täiendavalt koguti proovid 99 veiselt (Bos taurus).

Campylobacter spp ja Salmonella spp. esinemist käesoleva uurimuse käigus suurulukite rümpadelt ei tuvastatud.

Positiivseid STEC proove isoleeriti metssea, põdra ja veise rümpadelt, vastavalt 68%, 33% ning 32%.

Enim levinud STEC serogrupp oli O145, millele järgnes O103 ja O157, seda nii jahiulukite kui veisepopulatsioonis. Metssigade puhul leiti STEC serogruppe O157 8/25 (32,0%); O145 9/25 (36,0%); O103 9/25 (36,0%) ja põtradel O157 3/30 (10,0%); O145 6/30 (20,0%); O26 1/30 (3,3%); O103 4/30 (13,3%).

Käesoleva uurimuse käigus leiti, et Eesti metssigade ja põtrade populatsioon on STEC tüvede kandja, mistõttu võib haigustekitaja potsentiaalselt kanduda ulukiliha käitlemisel ja/või tarbimisel inimesele, kujutades seeläbi reaalset ohtu inimtervisele.

Eestis on vaja läbi viia ulatuslik ulukite ning ulukilihaga seonduv "metsast kahvlini" toiduohutuse riskide hindamine.
KASUTATUD KIRJANDUS

9. CEN ISO/TS 13136:2012 Microbiology of food and animal feed – Real-time polymerase chain reaction (PCR)-based method for the detection of foodborne
pathogens – Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups

20. EVS-EN ISO 6579:2003 Microbiology of food and animal feeding stuff – Horizontal method for the detection of Salmonella spp

57. Rabatsky-Ehr, T., Dingman D., Marcus, R., Howard, R., Kinney, A., Mshar, P. (2002). Deer Meat as the Source for a Sporadic Case of *Escherichia coli*

PREVALENCE OF *SHIGA* TOXIN-PRODUCING *ESCHERICHIA COLI* IN LARGE GAME AND BOVINE CARCASSES IN ESTONIA

RESUME

Very little is known about the role of wildlife as a reservoir of *Shiga* toxin-producing *Escherichia coli*, *Campylobacter* spp. and *Salmonella* spp. in Estonia. Therefore, the main aim of the present work was to study the prevalence of these important zoonotic pathogens in large game carcasses. Additionally, the prevalence of *Shiga* toxin-producing *E. coli* pathogenicity related genes were determined for cattle carcasses as the main reservoir of verotoxigenic *E. coli* according to scientific literature.

According to the results of present study the large game as carrier of *Shiga* toxin-producing *Escherichia coli* serogroups was determined. Cattle carcasses related study showed that *Shiga* toxin-producing *Escherichia coli* was also present in Estonian cattle population. However, large game carcasses were significantly (*p < 0.05*) more contaminated with *Shiga* toxin-producing *Escherichia coli* toxigenic genes compare to cattle carcasses.

A total of 60 carcass samples from hunted game animals, including 30 elk (*Alces alces*), 25 wildboar (*Sus scrofa*), 3 bear (*Ursus arctos*) and 2 roe deer (*Capreolus capreolus*) were collected. In addition, 99 cattle carcass (*Bos taurus*) samples were gathered and analysed. *Campylobacter* spp and *Salmonella* spp. was not detected from large game carcass samples in present study. Positive STEC samples were isolated from wildboars in 17 out of 25 (68.0%), from elk 10 out of 30 (33.3%) and from cattle 32 out of 99 (33.3%) carcass samples.

The most prevalent STEC serogroup was O145 followed by O103 and O157 both in large game and cattle population. In wildboars STEC serogroups O157 was detected 8/25 (32.0%); O145 9/25 (36.0%); O103 9/25 (36.0%) and form elk O157 3/30 (10.0%); O145 6/30 (20.0%); O26 1/30 (3.3%); O103 4/30 (13.3%).
The results of present study showed that the populations of wild boars and elks in Estonia are carriers of STEC toxigenic genes and therefore may transfer pathogenic STEC for human and contribute human foodborne infections.

The complex risk assessment on game meat consumption related food safety risks taking into account entire production chain from "Forest to Fork" is needed in Estonia.
LISAD
LISA 1. Metoodiline skeem *Salmonella* spp. tuvastamiseks ja uurimiseks

1. **Puhverdatud peptoonvedelik**, toatemperatuuril
 - Inkubeerimine 18 ± 2 tundi, 37 °C ± 1 °C

2. **Selektiivne rikastamine**
 - 0,1 ml kultuuri külvamine 10 ml RVS rikastuspuljongsse. Inkubeerimine 24 ± 3 tundi, 41,5 °C ± 1 °C juures
 - 1 ml kultuuri külvamine 10 ml MKTTn rikastuspuljongs. Inkubeerimine 24 ± 3 tundi, 37 °C ± 1 °C juures

3. **Plaantele külvamine**
 - 10 µl puljongit kantakse XLD agarsöötmel ning Briljantrohelise agarsöötmel, inkubeerimine 24±3h, 37 °C ± 1 °C

4. **Kinnitamine**
 - Igalt plaadilt testi *Salmonella* iseõimuüliku kolooniat. Kui negatiivne, siis testi nelja kahtlusalust kolooniat
 - Kahtlaste kolooniate kandmine mitte-selektiivsetele agaritele, inkubeerimine 24 ± 3 tundi, 37 °C ± 1 °C

 - Biokemiline kinnitus
 - Seroloogiline kinnitus

 - Tulemuste väljendamine
LISA 2. Metoodiline skeem *Campylobacter* spp. tuvastamiseks ja uurimiseks

1. **Uuritava proovi kogus (25 ml)**
2. **9 x 25 = 225 ml-sse rikastuspuljongisse (Bolton)**
3. **Inkubeerimine mikroaeroobses keskkonnas 4-6 tundi temperatuuril 37 °C, seejärel 44 ± 4 tundi temperatuuril 41,5 °C**
4. **10 μl materjali m-CCD-agarile**
5. **Plaatide inkubeerimine mikroaeroobses keskkonnas 44 ± 4 tundi temperatuuril 41,5 °C**
6. ***Campylobacter* iseloom ulike kolooniate välja valimine**
7. **Tõestustestide tegemine ning vajadusest liiglise koosluse määramine**
8. **Analüüsitiillem uste registreerimine**
LISA 3. Metoodiline skeem *Shiga*-toksiine tootva *E. coli* tuvastamiseks ja uurimiseks

1. Uuritava proovi kogus x g või x ml
2. 9 x ml mTSB = N/A või BPW
3. Rikastamine 18 - 24 tundi temperatuuril 37 °C ± 1 °C
4. Uuritava proovi kogus (1 ml), DNA puhastamine ning *stx* ja *eae* geenide tuvastamine
 - Positiivne tulemus *stx* ja *eae* suhtes: määrä serogruppidega seonduvad geenid. Isoleerimine.
 - Positiivne tulemus *stx* suhtes: Isoleerimine.
 - Negatiivne tulemus *stx* suhtes:
5. Tulemuste esitamine

a) Lateraalne

b) Mediaalne

a) Lateraalne

b) Mediaalne
Lihtlitsents lõputöö salvestamiseks ja üldsusele kättesaadavaks tegemiseks ning juhendaja(te) kinnitus lõputöö kaitsmisele lubamise kohta

Mina, Kristiina Lindenberg , (autori nimi)
sünniaeg 02.12.1990,
1. annan Eesti Maaülikoolile tasuta loa (lihtlitsentsi) enda loodud lõputöö
SHIGA-TOKSIINE TOOTVA ESCHERICHIA COLI LEVIMUS SUURULUKITE NING VEISTE RÜMPADEL EESTIS,
mille juhendajad on Mati Roasto, Prit Elias, Toomas Kramamenko,
1.1. salvestamiseks säilitamise eesmärgil,
1.2. digiarhiivi DSpace lisamiseks
1.3. veebikeskkonnas üldsusele kättesaadavaks tegemiseks
kuni autoriõiguse kehtivuse tähtaja lõppemiseni;
2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile;
3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete kaitse seadusest tulenevaid õigusi.

Lõputöö autor ______________________________
(allkiri)

Tartu, __________________
(kuupäev)

Juhendaja(te) kinnitus lõputöö kaitsmisele lubamise kohta Luban lõputöö kaitsmisele.

__
(juhendaja nimi ja allkiri) (kuupäev)

__
(juhendaja nimi ja allkiri) (kuupäev)

__
(juhendaja nimi ja allkiri) (kuupäev)

__
(juhendaja nimi ja allkiri) (kuupäev)
Käesoleva uurimistöö raames avaldati "Terve Loom ja Tervislik Toit 2015" konverentsi kogumikus artikkel:

Lindenberg, K., Roasto, M., Kramarenko, T., Elias, P. 2015. Shiga-toksiini produtseeriv
E. coli, Salmonella ning termofiilsete kampülobakterite esinemus suurulkite rümpadel
Eestis. Terve Loom ja Tervislik Toit. Eesti Maaülikool, Paar OÜ, ISBN 978-9949-536-75-
7. lk. 116-121.

Artikliga seonduv poster valiti konverentsi parimaks stendiettekandeks kategoorias
"Tervislik Toit". Uurimisgrupile omistati AS Remedium preemia.