3D printimine termoplastse polüuretaaniga
dc.contributor.advisor | Soots, Kaarel | |
dc.contributor.author | Hermanson, Egon | |
dc.contributor.department | Põllundus- ja tootmistehnika | et |
dc.date.accessioned | 2017-06-12T07:29:02Z | |
dc.date.available | 2017-06-12T07:29:02Z | |
dc.date.defensed | 2017-06-15 | |
dc.date.issued | 2017 | |
dc.description | Magistritöö Tootmistehnika õppekaval | et |
dc.description.abstract | 3D printimine termoplastse polüuretaaniga Ultimaker 2 3D printeril on raskendatud, kuna Ultimakeri 3D printer on mõeldud filamentide ABS’i või PLA printimiseks, mitte termoplastsete polüuretaanist filamentide. Termoplastne polüuretaanist filament ummistub Ultimaker 3D printeri etteandemehhanismi ning prinditud tulemus on äärmiselt ebakvaliteetne. Käesoleva magistritöö eesmärgiks oli termoplastse polüuretaani 3D printimise uurimine 3D printeri Ultimaker 2 ja polüuretaani NinjaFlex näitel. Selleks skaneeriti Ultimaker 2 originaal etteandemehhanism, kasutades laserskännerit Nikon MCAx20/MMDx50 täpsusega 50μm. Saadud punktipilv töödeldi programmiga SpaceClaim, millest saadud 3D mudel pöördprojekteeriti kasutades tarkvarasid AutoDesk Fusion 360 ja SolidWorks 2013. Uue etteandemehhanismiga tehti filamendi survepinge katseid, kus võrreldi originaali ja uue etteandemehhanismi poolt tekitatavat filamendi survepinget ekstruuderile. Katsete käigus selgus, et uus etteandemehhanism võimaldab filamentide ABS ja TPU 95A puhul suuremat survepinget, kui filamendi NinjaFlex puhul. Vähendamaks filamendi ja ühendustoru siseseinte vahelist hõõrdumist, lisati filamendile NinjaFlex määrdeainet glütserooli, mis ühtlustas filamendi liikumist ja tõstis filamendi survepinget. Kui 3D printeri Ultimaker 2 originaal etteandemehhanismiga saavutati filamendi survepinge ekstruuderisse 0.468 ± 0.12395% N/mm2 , pöördprojekteeritud uue etteandemehhanismiga saavutati 0.588 ± 0.02695% N/mm2 . Printimise katsete käigus selgitati välja optimaalsed printimise parameetrid filamendi NinjaFlex printimiseks 3D printeril Ultimaker 2. Prinditud katsekehade välisseinte kvaliteet oli hea ning katsekehade pealmine kiht oli sile. | et |
dc.description.abstract | The feeder design of 3D printer Ultimaker 2 which uses fused filament fabrication technology for printing is not ideal for printing thermoplastic polyurethane due the great elasticity of filament. The aim of this study is to reverse engineer and upgrade the original Ultimaker 2 3D printer feeder for printing thermoplastic polyurethane. In order to do that, the original Ultimaker 2 feeder had to be scanned by using a laser scanner Nikon MCAx20/MMDx50 with an accuracy of 50μm. After scanning the measuring points of feeder parts, the received data was then converted into mesh data. Mesh data was later converted into a 3D model using different 3D modelling software, such as SpaceClaim, AutoDesk Fusion 360 and SolidWorks 2013 to remodel the feeder system. After 3D printing of the reverse engineered feeder system, the compressive stress tests were conducted in order to compare the compressive stress differences on to the extruder between the original and the reverse engineered feeding system. After the alternations the new feeder parts were printed out with Ultimaker 2 using the material ABS. The new feeder for Ultimaker 2 works normally without problems. Also the filament did not jam in the feeder during tests. Test results conclude that the upgraded feeder allows pushing the filament made of thermoplastic polyurethane with greater and even force compared to the original feeder when the filament was covered with glycerol. Filament NinjaFlex covered with glycerol and with original feeder had compressive stress 0.468 ± 0.12395% , with the new feeder, the compressive stress increased to 0.588 ± 0.02695% N/mm2 . This provides stable material flow from extruder and better quality of printing. The tests done in this study conclude that optimal printing parameters were found. The printed object had quite a good quality, walls did not have any openings and the surface was smooth. | en |
dc.identifier.uri | http://hdl.handle.net/10492/3605 | |
dc.publisher | Eesti Maaülikool | |
dc.subject | magistritööd | et |
dc.subject | 3D-printimine | et |
dc.subject | parameetrid | et |
dc.subject | printimine | et |
dc.title | 3D printimine termoplastse polüuretaaniga | et |
dc.title.alternative | The 3D printing with thermoplastic polyuerthane | en |
dc.type | Master Thesis |
Failid
Originaal pakett
1 - 5 5
Laen...
- Nimi:
- Egon Hermanson_MA2017.pdf
- Suurus:
- 1.52 MB
- Formaat:
- Adobe Portable Document Format
- Kirjeldus:
- Täistekst
Pisipilt ei ole saadaval
- Nimi:
- Koostejoonis_Egon Hermanson.PDF
- Suurus:
- 87.51 KB
- Formaat:
- Adobe Portable Document Format
- Kirjeldus:
- Lisa A. Etteandemehanismi koostejoonis
Pisipilt ei ole saadaval
- Nimi:
- korpuse külg A_Egon Hermanson.PDF
- Suurus:
- 88.54 KB
- Formaat:
- Adobe Portable Document Format
- Kirjeldus:
- Lisa A. Etteandemehhanismi korpuse külg A
Pisipilt ei ole saadaval
- Nimi:
- korpuse pool B_ Egon Hermanson.PDF
- Suurus:
- 66.05 KB
- Formaat:
- Adobe Portable Document Format
- Kirjeldus:
- Lisa A. Etteandemehhanismi korpuse pool, külg B
Pisipilt ei ole saadaval
- Nimi:
- Katsekeha 120426_ Egon Hermanson.PDF
- Suurus:
- 69.84 KB
- Formaat:
- Adobe Portable Document Format
- Kirjeldus:
- Lisa B. Printimise katsekeha