Läänemeres kasvatatud söödava rannakarbi (Mytilus edulis/trossulus L.) väärindamise võimalused
Laen...
Kuupäev
2021
Kättesaadav alates
16.06.2021
Autorid
Adler, Indrek
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Eesti Maaülikool
Abstrakt
Läänemere perspektiivsemaks vesiviljeldavaks karbiliigiks on söödav rannakarp. Eesti
rannikumere väikesest soolsusest tingituna on siinsete söödavate rannakarpide
mõõtmed väiksemad kui Läänemere lääneosas või Põhjameres. Selleks, et saaksime
siin edukalt karbikasvatusega tegeleda, on vajalik meie keskkonda sobilike
kasvatusmeetodite arendamine ning vaja tegeleda toote väärindamisega, et antud
vesiviljelus oleks jätkusuutlik
Läänemere keskkonnas on karbi biomassi väärindatud väga vähe. Käesoleva töö
eesmärk on välja töötada söödava rannakarbi biomassist saadava kuivmassi eraldamise
metoodika, mis oleks toiduainetetööstuses rakendatav ja majanduslikult tasuv.
Eesmärgi saavutamiseks püstitati järgmised uurimisülesanded:
1) Anda teoreetiline ülevaade rannakarbi kasvatamise ja väärindamise
võimalustest.
2) Viia läbi kuivaine tootmise katsed, mille käigus hinnatakse:
a) Eeltöötlemata karbi lihamassi eraldamise efektiivsust karbi kestast ja selle
tootmises kasutamise potentsiaali.
b) Filtreerimise mõju proteiini saagikusele.
c) Tava- ja külmkuivatusmeetodite võrdlus. Väärindamisega seotud eesmärkide saavutamiseks viidi läbi laboratoorsed katsed
karbiliha eemaldamiseks ja kuivatamiseks, kasutades selleks kuivatamist termokapis
ja lüofilisaatorit meetodite võrdluseks. Karbiliha eraldamisel analüüsiti filtreerimise
mõju.
Katseteks kasutati Läänemeres kasvanud rannakarbi Mytilus edulis ja M. trossolus
hübriidi.
Katsete tulemusena selgus, et kuivmassi eraldamine värskest või külmutatud karbist on
lihtsate vahenditega teostatav. Lihtsa purustamise ja setitamisega õnnestus eraldada
märkimisväärne kogus kuivainet, mille valgusisaldus on kõrge. Ühtlasi sai selgeks, et
filtreerimine ei ole otstarbekas, sest valgukadu on erakordselt suur. Lisaks teeb
filtreerimine kuivaine eraldamisprotsessi keerukaks ja kulukaks, mida kuivatamisel
säästetud energiakulu tõenäoliselt ei kompenseeri.
Katse käigus õnnestus leida meetod, mis oleks töönduslikult rakendatav ega vajaks
ülemäära keerulist ja kallist masinaparki. Karbimassi töönduslikuks väärindamiseks
tuleks kasutada ära nii jääkmaterjal kui eraldatud kuivmass.
Keskmiselt saadi 100 grammist rannakarpidest 7,56 grammi kuivainet, mille keskmine
valgusisaldus oli 45%. Rannakarbi märgmassist on keskmiselt võimalik eraldada
6,32% valku. Katses kasutati lihtsat ja tööstusele skaleeritavat tehnoloogiat, mis
võimaldas rannakarbi märgmassist eraldada 3,16% puhast valku.
Kõrvalsaadusena jääb karbist 43,65% karbipuru, mis on valdavalt kest, kuid sisaldab
4,74% valku. Jahvatamisjärgne peenfraktsioon ja valgusisaldus võimaldab materjalist
teha linnutoitu.
The most promising aquaculture species in the Baltic Sea is the edible mussel. Due to the low salinity of the Estonian coastal sea, the size of edible mussels is smaller than in the western Baltic or the North Sea. In order to be able to successfully farm shellfish here, it is necessary to develop farming technologies that are suitable for our environment, and to process the product so that this aquaculture is sustainable. In the Baltic Sea environment, there is very little processing of shellfish biomass. The aim of this work is to develop a methodology for the extraction of dry mass from edible mussel biomass that is applicable and economically viable for the food industry. To achieve this objective, the following research objectives were set: 1) To provide a theoretical overview of the possibilities of mussel cultivation and processing. 2) To carry out experiments on the production of dried mussels in order to evaluate the theoretical and theoretical background of the mussel production: (a) The efficiency of separating the unprocessed mussel pulp from the mussel shell and its potential for use in production. (b) Effect of filtration on protein yield. (c) Comparison of conventional and freeze-drying methods . To achieve the objectives of the evaluation, laboratory tests were carried out on the removal and drying of mussel meat. This was done using drying in a thermocup and a comparison with the freezing method using a lyophilizer. The effect of filtration was analysed for the separation of the carbohydrate meat. A hybrid of the Baltic mussel Mytilus edulis and M. trossolus was used for the experiments. The experiments showed that the separation of dry matter from fresh or frozen mussels can be achieved by simple means. Simple crushing and sedimentation succeeded in extracting a significant amount of dry matter with a high protein content. It also became clear that the use of filtration is not practical because the protein loss is extremely high. In addition, filtration makes the process of dry matter separation more complex and a cost that is unlikely to be compensated by the energy saved in drying. The experiment has succeeded in finding a method that is operationally feasible and does not require an overly complex and expensive machine park. Both the residual material and the separated dry matter should be used for the operational refining of the mussel pulp. On average, 7.56 grams of dry matter were obtained from 100 grams of mussels, with an average protein content of 45%. On average, 6.32% protein can be extracted from the wet mass of mussels. A simple and industrially scalable technology was used in the experiment, which allowed the extraction of 3.16% of pure protein from the mussel wet mass. As a by-product, 43.65% of the shell remains as shell fragments, which are predominantly shell but contain 4.74% protein. The fine fraction and protein content after milling make the material a potential source of bird feed.
The most promising aquaculture species in the Baltic Sea is the edible mussel. Due to the low salinity of the Estonian coastal sea, the size of edible mussels is smaller than in the western Baltic or the North Sea. In order to be able to successfully farm shellfish here, it is necessary to develop farming technologies that are suitable for our environment, and to process the product so that this aquaculture is sustainable. In the Baltic Sea environment, there is very little processing of shellfish biomass. The aim of this work is to develop a methodology for the extraction of dry mass from edible mussel biomass that is applicable and economically viable for the food industry. To achieve this objective, the following research objectives were set: 1) To provide a theoretical overview of the possibilities of mussel cultivation and processing. 2) To carry out experiments on the production of dried mussels in order to evaluate the theoretical and theoretical background of the mussel production: (a) The efficiency of separating the unprocessed mussel pulp from the mussel shell and its potential for use in production. (b) Effect of filtration on protein yield. (c) Comparison of conventional and freeze-drying methods . To achieve the objectives of the evaluation, laboratory tests were carried out on the removal and drying of mussel meat. This was done using drying in a thermocup and a comparison with the freezing method using a lyophilizer. The effect of filtration was analysed for the separation of the carbohydrate meat. A hybrid of the Baltic mussel Mytilus edulis and M. trossolus was used for the experiments. The experiments showed that the separation of dry matter from fresh or frozen mussels can be achieved by simple means. Simple crushing and sedimentation succeeded in extracting a significant amount of dry matter with a high protein content. It also became clear that the use of filtration is not practical because the protein loss is extremely high. In addition, filtration makes the process of dry matter separation more complex and a cost that is unlikely to be compensated by the energy saved in drying. The experiment has succeeded in finding a method that is operationally feasible and does not require an overly complex and expensive machine park. Both the residual material and the separated dry matter should be used for the operational refining of the mussel pulp. On average, 7.56 grams of dry matter were obtained from 100 grams of mussels, with an average protein content of 45%. On average, 6.32% protein can be extracted from the wet mass of mussels. A simple and industrially scalable technology was used in the experiment, which allowed the extraction of 3.16% of pure protein from the mussel wet mass. As a by-product, 43.65% of the shell remains as shell fragments, which are predominantly shell but contain 4.74% protein. The fine fraction and protein content after milling make the material a potential source of bird feed.
Kirjeldus
Magistritöö
Kalanduse ja rakendusökoloogia õppekaval
Märksõnad
magistritööd, söödav rannakarp, rannakarbi väärindamine, roheline vesiviljelus, alternatiivne proteiin, keskkonnamajandus