EMÜ loodusteaduslikud kogud
Selle valdkonna püsiv URIhttp://hdl.handle.net/10492/3706
Sirvi
Sirvi EMÜ loodusteaduslikud kogud Märksõna "Estonia" järgi
Nüüd näidatakse 1 - 20 21
Tulemused lehekülje kohta
Sorteerimisvalikud
Kirje Estonian small lakes studied in 1999-2018 : [register](Estonian University of Life Sciences, 2022) Laugaste, Reet (koostaja)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Plankton samples of inland waters : [catalog](Estonian University of Life Sciences, 2022) Estonian University of Life Sciences. Institute of Agricultural and Environmental Sciences. Chair of Hydrobiology and Fisheries; Estonian University of Life Sciences. Institute of Agricultural and Environmental Sciences. Chair of Hydrobiology and Fisheries; Laugaste, Reet (editor); Timm, Henn (editor); Lill, Evi (editor)The number of sampled waterbodies was 1017. Most of the samples (22,900) have been collected from Estonia. There are also more than 800 samples from Russia (mainly from the eastern and southern part of Lake Peipsi) and ca 100 from other countries. In addition, there are also some samples of the Baltic Sea. Register code: according to the Estonian environmental register: https://keskkonnaagentuur.ee/en Of the total material, more than 13,000 specimens are phytoplankton, the rest is mostly metazooplankton. There are also some samples of protozooplankton, fish fry, periphyton and sediment. The collection time is between 1924 and 2019. The number of the persons who took the samples exceeds 60. The collection is located in the storage hall of the Centre for Limnology (Limnoloogia tee 1/1, Elva vald, Tartumaa). As of 6.04.2022, the collection was placed in 327 standard plastic boxes, each with a capacity of 27 l, dimensions 600x400x175 mm. The number of containers (plastic or glass bottles) was 23,814. Formalin, in some cases Kahle's solution, has been added to the samples for preservation. The collection is constantly being supplemented, mainly through the projects of the Estonian University of Life Sciences. Adding samples of 2020-2021 to the collection is in progress. Evi Lill, a senior laboratory assistant at the Centre for Limnology, has been the contributor to the table of raw data. The table was edited by Reet Laugaste, a specialist from the same institution, and Henn Timm, a senior researcher.Kirje Small lakes 1999(Estonian University of Life Sciences, 1999) Laugaste, Reet (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2000(Estonian University of Life Sciences, 2000) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Virro, Taavi (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2001(Estonian University of Life Sciences, 2001) Laugaste, Reet (Leg.); Tuvikene, Arvo (Leg.); Mäemets, Helle (Leg.); Mikelsaar, Raik (Leg.); Kõiv, Toomas (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2002(Estonian University of Life Sciences, 2002) Laugaste, Reet (Leg.); Tuvikene, Arvo (Leg.); Mäemets, Helle (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2003(Estonian University of Life Sciences, 2003) Laugaste, Reet (Leg.); Tuvikene, Arvo (Leg.); Rakko, Aimar (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2005(Estonian University of Life Sciences, 2005) Laugaste, Reet (Leg.); Rakko, Aimar (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2006(Estonian University of Life Sciences, 2006) Laugaste, Reet (Leg.); Rakko, Aimar (Leg.); Mäemets, Helle (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2007(Estonian University of Life Sciences, 2007) Laugaste, Reet (Leg.); Tuvikene, Arvo (Leg.); Mäemets, Helle (Leg.); Rakko, Aimar (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2008(Estonian University of Life Sciences, 2008) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Rakko, Aimar (Leg.); Panksep, Kristel (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2009(Estonian University of Life Sciences, 2009) Lill, Evi (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2010(Estonian University of Life Sciences, 2010) Mäemets, Helle (Leg.); Agasild, Helen (Leg.); Järvalt, Ain (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2011(Estonian University of Life Sciences, 2011) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Panksep, Kristel (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2012 (Estonian University of Life Sciences, 2012) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2013(Estonian University of Life Sciences, 2013) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Palmik, Kadi (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2014(Estonian University of Life Sciences, 2014) Laugaste, Reet (Leg.); Tuvikene, Arvo (Leg.); Mäemets, Helle (Leg.); Pent, Ave (Leg.); Pitk, Kersti (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2015(Estonian University of Life Sciences, 2015) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Pent, Ave (Leg.); Palmik, Kadi (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2016(Estonian University of Life Sciences, 2016) Laugaste, Reet (Leg.); Mäemets, Helle (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.Kirje Small lakes 2017(Estonian University of Life Sciences, 2017) Mäemets, Helle (Leg.); Palmik, Kadi (Leg.); Laugaste, Reet (Det.)Methods of phytoplankton processing. Samples were preserved with Lugol’s (acidified iodine) solution and processed using the Utermöhl (1958) method. Phytoplankton biomass was calculated from counts of cells or colonies using a Nikon Eclipse Ti-S inverted microscope at x200 and x400 magnification. Preserved sample (3 ml) was settled overnight. Identification and measurements took place in the course of counting. Counting units are independent (single) algal cells, colonies or filaments/trichomes. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Edler, L. (ed.) 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. – BMB WG 9. Utermöhl, H., (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38. Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin. Popovský, J., Pfiester, L.A. 2008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian.