TREICLAKE
Selle valdkonna püsiv URIhttp://hdl.handle.net/10492/7299
"Towards Research Excellence and Innovation Capacity in Studing Lake Ecosystems Functional Structures and Climate Change Impact " (1.01.2021−31.12.2023); Principal investigator: Lea Tuvikene, Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Chair of Hydrobiology and Fishery. Funder: European Commission
Sirvi
Sirvi TREICLAKE Märksõna "aquatic ecosystems" järgi
Nüüd näidatakse 1 - 2 2
Tulemused lehekülje kohta
Sorteerimisvalikud
Kirje From microscopy to genes – tracing toxic cyanobacteria in a shallow eutrophic lake(Estonian University of Life Sciences, 2022) Panksep, Kristel; Kisand, Veljo; Agasild, Helen; Sivonen, Kaarina; Institute of Agricultural and Environmental Sciences; Vasas, Gabor (opponent)Global warming paired with eutrophication processes is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. Cyanobacterial blooms are considered an increasing threat in freshwater. Traditional monitoring predominantly relies on cyanobacterial biomass as an indicator of potential toxin presence, disregarding that toxin concentrations can rapidly increase even when cyanobacterial biomass is low. The concentration of toxins in the water is related to the abundance of toxin-producing species and the amount of toxin per cell – toxin quota. My research provides valuable information about the cyanobacterial community composition, the abundance of toxic genotypes, microcystin concentrations, microcystin quota and the environmental factors that promote toxic cyanobacterial blooms in the large and shallow freshwater lake Peipsi. This is the first study to utilise molecular methods as complementary to routine monitoring to determine cyanobacterial toxicity potential in lake Peipsi. In situ studies on zooplankton taxon-specific ingestion of potentially toxic cyanobacteria are still limited. My study focused on the importance of cyanobacteria as a food source for the dominant crustacean grazers. Among the first studies using qPCR targeting cyanobacterial genus-specific mcyE synthase genes in zooplankton gut content analysis, we show that potentially toxic strains of Microcystis can be ingested directly or indirectly by different zooplankton grazers. Information gathered from this study expanded our knowledge on the ecology of toxic cyanobacteria, provided an indication of how molecular methods can improve traditional risk assessment concerning the abundance of cyanobacteria and their cyanotoxins and broadened our knowledge of how target specific molecular tools could be further used in aquatic food-web studies. In the current thesis, I present a synthesis of spatial and temporal variability of potentially toxic cyanobacteria and the importance of cyanobacteria as a food source for crustacean zooplankton in large and shallow lake. The thesis is based on three published papers each dedicated to a different aspect of the whole. This thesis improves our knowledge of potentially toxic cyanobacteria and cyanotoxins in large and shallow eutrophic lakes and also provides the first insight into the in-situ consumption of toxic Microcystis by cladoceran and copepod grazers dominating in the lake. The knowledge gained from this study will guide us to further important questions that should be addressed in future research regarding the functioning of the food web of lake Peipsi. Phytoplankton community through high throughput sequencing would allow analysing the relation of cyanobacterial community composition along with concentration and diversity of cyanotoxins. This would include small-sized cyanobacteria in analysis, which are now excluded from the research. To elucidate the processes underlying cyanotoxin dynamics in more detail, further exploration focusing on the expression of toxin genes along with toxin concentration would be beneficial. Toxin gene expression could better indicate potential risks, especially in water bodies comprising mixed assemblages of toxic and non-toxic cyanobacteria.Kirje Hydrometeorological and climatic control over lake phytoplankton : the importance of time scales(Estonian University of Life Sciences, 2021) Janatian, Nasime; Nõges, Peeter; Obrador, Biel; Cremona, Fabien; Laas, Alo; Institute of Agricultural and Environmental Sciences; Uusi-Heikkilä, Silvia (opponent)Phytoplankton reflects changes in the environment and plays a vital role in biogeochemical cycles and the climate system. The thesis attempts to link the phytoplankton dynamics with the timing, intensity, and duration of the local forcing factors at different time scales. We highlight the influence of two extremes of the wind gradient – storms and atmospheric stilling, on lake environments and phytoplankton dynamics over short and long periods, several aspects of which are poorly understood. Until recently, atmospheric stilling as a climatic phenomenon has been largely overlooked in lakes studies. To fill this research gap, we focussed on a large shallow polymictic lake (Võrtsjärv, Estonia), that was affected by a 30% decrease in average wind speed since 1996, and for which a long-term (54 years) phytoplankton and hydrometeorological database was available. Further, a contradiction between the continuous decrease in the lake’s nutrient loading and an increasing trend in phytoplankton biomass emerged as a topic of interest for this thesis. We summarise how storms interact with and alter the dynamic of phytoplankton communities. Further, we highlight to what extent this impact can change the ecological processes (e.g., nutrient, carbon, and energy cycling) within lakes and their environmental conditions in the short and long term. Using Nonmetric Multidimensional Scaling ordination of phytoplankton community composition for the years 1964–2017, we revealed three distinct periods with breaking points coinciding with abrupt changes in the wind and/or water level. We introduced a concept of "light niche," a newly discovered mechanism of meteorological control over phytoplankton in light-limited shallow lakes. Combining the monthly phytoplankton data with daily data on hydrometeorological forcing factors — thermal, light, wind, and water-level regimes and using variance partitioning with linear mixed effect modelling (LME), we found that (i) the external forcing factors relevant for each phytoplankton variable could be individualised by having a similar variance partitioning among time scales as the particular phytoplankton variable; (ii) with the largest seasonal variation component, the dominant shade-tolerant filamentous cyanobacteria were most affected by seasonal factors such as solar irradiance and water level; (iii) the LME was proven appropriate for resolving the temporal cross-scale issues.