2021, Vol. 19, Special Issue 1
Selle kollektsiooni püsiv URIhttp://hdl.handle.net/10492/6909
Sirvi
Sirvi 2021, Vol. 19, Special Issue 1 Autor "Carmo, D.F." järgi
Nüüd näidatakse 1 - 2 2
Tulemused lehekülje kohta
Sorteerimisvalikud
Kirje Influence of different methods of treating natural açai fibre for mortar in rural construction(2021) Rocha, D.L.; Azevedo, A.R.G.; Marvila, M.T.; Cecchin, D.; Alexandre, J.; Carmo, D.F.; Ferraz, P.F.P.; Conti, L.; Rossi, G.Açai is a typical Amazonian fruit that has enormous potential for use in medicines and foods, whose consumption has been growing year after year. One of the major environmental impacts related to Açai is the generation of agro-industrial wastes, which are disposed of in landfills. One of the major problems related to the reuse of natural fibres in cementitious materials is related to their durability due to the alkalinity of the matrix. Thus, the objective of this work was to evaluate three different methodologies for surface treatment of Açai fibre, by immersion in NaOH, KOH and Ca(OH)2 solution to mortar application in rural construction. After the treatments, the fibres were added in a proportion of 2.5 and 5.0% in relation to the cement mass, in addition to the reference mortar (without fibre) in the making of the prismatic specimens (40×40×160 mm) and cured for 28 days in room temperature. Right after the curing period, the specimens were evaluated according to the mechanical strength of flexion and compression, workability, water absorption by capillarity and mass density in the hardened state of each methodology. The results showed that the best treatment methodology is with NaOH solution, with the addition of 5% Açai fibre in relation to the cement mass, producing a suitable mortar for use in rural buildings.Kirje Productive efficiency and density and viscosity studies of biodiesels from vegetable oil mixtures(2021) Correia, R.C.B.; Silva, F.C.; Barros, M.M.; Maria, A.C.L.; Cecchin, D.; Souza, L.A.; Carmo, D.F.Currently in Brazil the minimum content of biodiesel in mixtures is 11% and, according to Brazilian laws, the goal is to reach 15% in volume in diesel fuel available for final consumers by 2023. Therefore, studies about different matrices of biodiesel and distinct mixtures are essential. The present work had two goals, the first one was to analyse physico-chemical properties of 16 biofuels produced from soybean and cotton oils, using S10 diesel, in mixtures B8, B10, B20 and B30. The second goal was to verify the vantages and disadvantages of biodiesel production through prior mixing of the oils, before and after the transesterification process. All biofuels produced presented results of specific mass values at 20 °C and kinematic viscosity at 40 °C within the limits established by ANP Resolution no 30/2016 and International Resolutions. The soybean B20 biofuel showed the best overall results, with the second highest production yield of 65.36%, the fifth lowest kinematic viscosity with 3.48 mm s -1 . The mixture of soybean and cotton oils before the transesterification process presented the highest production yield when compared with the production from a single oil or biodiesel mixtures. The results found proved to be satisfactory and corroborate to continue with the increase of biodiesel in the mixture with diesel to B15 until 2023 and support the possibility of planning for a gradual increase of this mixture in the following years.
