Basseinivee jääksoojuse kasutamine Värska Veekeskuses
Kokkuvõte
Veekeskustes basseinivett puhastavate filtrite pesemisel väljutatakse märgatav hulk vett,
mille jääksoojust saaks kasutada tagastuva vee eelsoojendamiseks. Sellest tulenevalt oli
magistritöö eesmärgiks uurida basseinivee jääksoojuse kasutamise otstarbekust Värska
Veekeskuses. Eesmärgi saavutamiseks kasutati veekeskuse eelnevate aastate
tarbimisandmeid ning teostati täpsustavad mõõtmised. Nende andmete alusel leiti
basseinivee jääksoojuse teoreetiline energeetiline potentsiaal. Kasutades soojusvaheti
teooria lihtsustusi koostati MS Exceli põhine rakendus soojusvahetusprotsessi uurimiseks
kahes erineva tüübilises soojusvahetis – akumulatsioonipaagi siseses (n spiraaltoru) ja
paagivälises vastuvoolulises soojusvahetis. Koostatud rakenduse abil leiti veekeskuse
tingimustele vastavas olukorras soojusvahetite energeetiline kasutegur, mille alusel arvutati
soojustagastussüsteemi aastas tagastatav energiahulk ning rahaline võit. Tasuvusaja
määramiseks kasutati lihttasuvusaja ja nüüdispuhasväärtuse meetodit. Jääksoojuse
teoreetiliseks aastaseks potentsiaaliks saadi 678,12 GJ. Paagisisese soojusvaheti korral
loeti sellest kasutatavaks 592,56 GJ. Jääksoojuse kasutamise efektiivsuseks saadi
paagisisese soojusvahetiga 54,1 % ning paagivälisega 77,9 %. Tulenevalt erinevatest
potentsiaalidest ja efektiivsusest tagastuks vastavalt 320,57 GJ või 580,26 GJ energiat
aastas. Ettevõtte planeeritud investeeringu ja saadava toetuse paigutamisel
soojustagastussüsteemi hakkaks see nüüdispuhasväärtuse meetodi järgi kasumit teenima
kolmandal või viiendal aastal. Soojustagastussüsteemi paigaldamine on tasuv arvestades, et
seadme tegelik eluiga ületab kümmet aastat. During the backwashing of sand filters, significant amount of pool water, which could be
used for preheating of return water, is pumped into the sewerage. According to this, the
aim of this master's thesis was to explore the profitability of pool water residual heat
recovery in Värska Water Park. To achieve the aim consumption data of previous years
were studied and additional measurements were performed. Pool water theoretical residual
energy potential was calculated based on obtained data. MS Excel based application was
made according to heat exchanger theory simplifications to study the heat exchange
processes in two types of heat exchangers – built in heat storage tank (e coil pipe) and
external counterflow heat exchanger. Thermal efficiency for both heat exchangers were
calculated in water park conditions. Based on the efficiency of heat exchanger types, the
annual energy recovered and gained earnings were found. Based on the calculations of
potential annual earnings the project profitability was found with simple payback and net
present value method. Annual theoretical residual energy potential was 678,12 GJ. Due to
the construction of internal heat exchanger, only 592,56 GJ was available. Residual energy
recovery efficiency with internal device was 54,1 % and 77,9 % with external device. Due
to differences in energy potential and efficiency the annual amount of recovered energy
was 320,57 GJ or 580,26 GJ. Company's planned investment would earn profit in the third
or fifth year according to net present value. On the basis of this master's thesis installation
of residual energy recovery unit will be expedient considering that the lifespan exceeds ten
years.